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Stationary solutions of linear stochastic delay differential equations:
Applications to biological systems
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Recently, Küchler and Mensch@Stochastics Stochastics Rep.40, 23 ~1992!# derived exact stationary prob-
ability densities for linear stochastic delay differential equations. This paper presents an alternative derivation
of these solutions by means of the Fokker-Planck approach introduced by Guillouzic@Phys. Rev. E59, 3970
~1999!; 61, 4906 ~2000!#. Applications of this approach, which is argued to have greater generality, are
discussed in the context of stochastic models for population growth and tracking movements.
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I. INTRODUCTION

Recently, there has been a growing interest in the effe
of noise on dynamical systems with delays. In biologic
systems, both noise and delays are inevitable. Noise is
manent in any open system involving up-take and dissipa
of energy. Delays usually arise due to finite informati
transmission times. In this context, delayed visual feedb
systems@1–9#, stochastic resonance and oscillator ensemb
with delayed interactions@10–14#, synchronization of human
movements@15#, field theoretical models of brain activit
@16–23#, and disturbed speech control due to delayed au
tory feedback~the so-called Lee effect; see Refs.@6,24# and
references therein! have been studied. Furthermore, as
alternative to motor control models without delays@25–29#,
stochastic models with delays have been proposed to
scribe postural sway@30–34#.

Despite a potentially wide range of applications for s
chastic processes with delays, the explicit structures of t
stationary probability densities have hardly been studied.
ing stochastic delay differential equations~SDDE’s!, Mackey
and Nechaeva@35# and Küchler and Mensch@36# succeeded
in identifying parameter regimes in which stationary so
tions exist. Küchler and Mensch also obtained stationary
lutions for linear SDDE’s with finite delays, while Guillouzi
et al. derived stationary solutions for nonlinear SDDE’s
the limit of very small delays using a Fokker-Planck a
proach@37,38#. In the present paper, the findings of Ku¨chler
and Mensch and Guillouzicet al. will be combined in order
to derive stationary probability densities for linear SDDE
with finite delays by means of the Fokker-Planck approa

In general, the Fokker-Planck approach to stochastic p
cesses is superior to the approach via stochastic differe
equations, because only in the former case can statio
probability densities for nonlinear drift forces be obtaine
For this reason, a theory of time-continuous stochastic p
cesses with delays should preferably be based on the th
of Fokker-Planck equations. In order to develop such
theory of Fokker-Planck equations with delays, a first b
essential step is to discuss the linear case, in which statio
solutions can be compared with those derived from the c
responding linear SDDE’s. The first part of this paper, S
II, will be devoted to this subject.
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The second part of this paper, Sec. III, is concerned w
applications of the results obtained in Sec. II. In particul
two models will be discussed that are well established in
literature: a model for population growth, and a determinis
model for rhythmic tracking movements under delayed
sual feedback. The former model will be extended to co
with fluctuations and delays in the dynamics. The lat
model will be extended to account for motor variability.
Sec. III we will also show how to analyze nonlinear SDDE
by means of the stationary probability density derived for
linear case.

II. STATIONARY SOLUTIONS OF LINEAR SDDE’S

A. Derivation of stationary probability densities

We consider the evolution of a dimensionless rand
variablej8(t8) defined on the real line. Heret8 denotes time
measured in arbitrary units~denoted asTU8). Let G8(t8)
denote a Langevin force witĥG8(t8)G8(s8)&5d(t82s8),
where ^•& is the ensemble average andd(•) is the delta
distribution @39–41#. Furthermore, lett8>0 denote the de-
lay. We now assume thatj8(t8) satisfies the SDDE

d

dt8
j8~ t8!52g18j8~ t8!2g28j8~ t82t8!1AQ8G8~ t8!

~1!

for t8>t08 , and j8(t8)5F8(t8) for t8P@ t082t8,t08#. Here
g18>0, g28.0, andQ8.0 correspond to friction coefficient
and the fluctuation strength, respectively.F8(t8) describes
the initial condition of the stochastic process in terms o
graph defined on@ t082t8,t08#. For the sake of convenience
we eliminate the fluctuation strengthQ8 by introducing new
variables tªQ8t8, tªQ8t8, t0ªQ8t08 , j(t)ªj8(t/Q8),
g1ªg18/Q8, g2ªg28/Q8, F(t)ªF8(t/Q8), and G(t)
ªG8(t/Q8)/AQ8. Now time is measured in unitsTU
5TU8@Q8#, where@Q8# denotes the units in which the fluc
tuation strength is described. Then Eq.~1! can be trans-
formed into

d

dt
j~ t !52g1j~ t !2g2j~ t2t!1G~ t ! ~2!
©2001 The American Physical Society17-1
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for t>t0 and j(t)5F(t) for tP@ t02t,t0#. In addition, we
have ^G(t)G(s)&5d(t2s). Küchler and Mensch showe
that for natural boundary conditions andg2.g1>0 a sta-
tionary solution of Eq. ~2! exists if and only if 0
<tAg2

22g1
2,arccos(2g1 /g2)<p/2 @see Ref. @36# Eqs.

~2.17! and~2.18!#. In particular, forg150 we have the con-
dition g2tP@0,p/2). To exploit also the results obtained b
Guillouzic et al. @37#, we assume for the moment that th
stochastic process@Eq. ~2!# is subjected to reflecting bound
aries at6A. In this case, the process described by Eq.~2!
solves the delay Fokker-Planck equation

]

]t
P~x,t !52

]

]x
SA~x,t !

ªg1

]

]x
xP~x,t !1g2

]

]x
P~x,t !

3E
2A

A

y P~y,t2tux,t !dy1
1

2

]2

]x2
P~x,t ! ~3!

for t>t0, whereP(x,t) denotes the process probability de
sity, SA(x,t) is the probability current, andP(y,t2tux,t) is a
conditional probability density. BothP(x,t) and P(y,t
2tux,t) are subjected to the initial conditionP(x,t)5d(x
2F(t)) for tP@ t02t,t0#. The stationary solutionPst of Eq.
~3! satisfies

g1xP st
A~x!1g2P st

A~x!E
2A

A

yP st
A~y,t2tux,t !dy1

1

2

]

]x
P st

A~x!

52SA5const. ~4!

We have not been able to solve Eq.~4! with respect to
Pst(x) for finite boundaries6A. However, as we will show
below, a solution can be found in the limitA→`. For this
reason, we solve the SDDE~2! for natural boundary condi
tions ~NBC’s!. To this end, we assume that if the stationa
solution P st

NBC of Eq. ~2! exists, it can be derived as th
distribution P st

A(x) in the limit A→`. This implies that
P st

NBC(x) solves the integrodifferential equation

g1P st
NBC~x!1g2P st

NBC~x!E
2`

`

y P st
NBC~y,t2tux,t !dy

1
1

2

]

]x
P st

NBC~x!52SNBC50. ~5!

Note that the stationary probability currentSNBC vanishes,
because we haveP st

NBC(x→6`)50 ~a normalization condi-
tion!.

Before solving Eq.~5! with respect toP st
NBC(x), we would

like to stress a fundamental property of Eq.~5!, which will
support the validity of our approach. Let us define the s
tionary n:1 autocorrelationKst

(n)(Dt) of the random variable
j(t) for n>1 by
02191
-

Kst
(n)~Dt !ª^jn~ t !j~ t2Dt !&st

5E
2`

` E
2`

`

xny Pst
NBC~x,t;y,t2Dt !dx dy, ~6!

wherePst
NBC(x,t;y,t2Dt) is the joint probability density in

the stationary case. Using the identityP st
NBC(x)P st

NBC(y,t
2tux,t)5Pst

NBC(x,t;y,t2t) ~also see Ref.@37#, p. 3971!, we
can rewrite Eq.~5! as

g2E
2`

`

y P st
NBC~x,t;y,t2t!dy

52g1xP st
NBC~x!2

1

2

]

]x
P st

NBC~x!. ~7!

We now multiply the left and right hand sides of Eq.~7! by
xn, integrate with respect tox, and evaluate the right han
side obtained by partial integration. This gives us

Kst
(n)~Dt5t!5

n

2g2
E

2`

`

xn21P st
NBC~x!dx

2
g1

g2
E

2`

`

xn11P st
NBC~x!dx

⇒
g150

Kst
(1)~Dt5t;g150!5

1

2g2
. ~8!

Consequently, forg150, the stationary 1:1 autocorrelatio
Kst

(1)(Dt) for Dt5t is reciprocal to twice the friction coeffi-
cient g2, irrespective of the delay lengtht. This result was
previously derived by Ku¨chler and Mensch, who used a
approach different from the Fokker-Planck approach p
sented here@71#.

We now solve Eq.~5! with respect toP st
NBC(x). To this

end, we consider Eq.~5! in the form of Eq.~7! and—in line
with the work of Küchler and Mensch, who showed that th
stationary solution of the Eq.~2! is a Gaussian proces
@36#—we use the ansatz

Pst
NBC~x!5Al~t!

p
exp$2l~t!x2%, ~9!

Pst
NBC~x,tuy,t2t!5Aa~t!

p
exp$2a~t!@x2b~t!y#2%,

~10!

Pst
NBC~x,t;y,t2t!

5
Aa~t!l~t!

p
exp$2a~t!@x2b~t!y#22l~t!y2%.

~11!

Note that this ansatz involves three coefficientsl, a, andb
which, in general, depend on the delayt. By substituting Eq.
~9! into the right hand side of Eq.~7!, and Eq.~11! into the
7-2
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STATIONARY SOLUTIONS OF LINEAR STOCHASTIC . . . PHYSICAL REVIEW E 64 021917
left hand side of Eq.~7!, and by carrying out the integratio
with respect toy, we obtain~see the Appendix!

g2

a3/2b

~ab21l!3/2
x expH 2

al

ab21l
x2J

5~l2g1!x exp$2lx2%. ~12!

Equation~12! is satisfied for allxPR if the factors and ex-
ponents of both sides coincide. Consequently, we find
conditions

g2

a3/2b

~ab21l!3/2
5l2g1 and ab21l5a. ~13!

Using Eq.~13!, we can expressa(t) and b(t) in terms of
l(t) and obtain

a~t!5
l~t!

12S l~t!2g1

g2
D 2 and b~t!5

l~t!2g1

g2
.

~14!

According to Küchler and Mensch, forg2.g1>0 the vari-
ances2(t) of the process given by Eq.~2! reads

s2~t!5
g2 sin~Ag2

22g1
2t!1Ag2

22g1
2

2Ag2
22g1

2
•@g11g2 cos~Ag2

22g1
2t!#

~15!

with 0<tAg2
22g1

2,arccos(2g1 /g2)<p; see Ref.@36# Eq.
2.28. Note that forg1.g2>0, and g15g2>0 equations
similar to Eq.~15! can be derived. Sinces2(t) is related to
l(t) by s2(t)51/2l(t), we can therefore expressl(t) as

l~t!5
Ag2

22g1
2
•@g11g2 cos~Ag2

22g1
2t!#

g2 sin~Ag2
22g1

2t!1Ag2
22g1

2
. ~16!

Let us briefly discuss the results obtained so far. In
limit of a vanishing delay, that is, fort→0, we obtain
l(0)5g11g2 , b(0)51, anda→`. The corresponding sta
tionary solutionPst

NBC(x) with l(0)5g11g2 coincides with
the stationary probability density of an ordinary Ornste
Uhlenbeck process. Furthermore, the conditional probab
density @Eq. ~10!# converges to ad-distribution, that is,
limt↓0Pst

NBC(x,tuy,t2t)5d(x2y). Similarly, the joint prob-
ability density@Eq. ~11!# converges like limt↓0Pst

NBC(x,t;y,t
2t)5d(x2y)Pst

NBC(y). Consequently, Eq.~7! reduces to

~g11g2!xP st
NBC~x!52

1

2

]

]x
P st

NBC~x!, ~17!

which is a well-known expression in the theory of ordina
Ornstein-Uhlenbeck processes. For small delayt and g1
50, we can expandl(t) given by Eq.~16! into a Taylor
series, and thus reobtain the results obtained by Guillou
et al. ~Ref. @37# Eq. ~31!!. From Eq.~16! it follows that in the
limit t↑ arccos(2g1 /g2)/Ag2

22g1
2 the coefficientl(t) van-
02191
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ishes. Consequently, the Gaussian distribution@Eq. ~9!# con-
verges to a uniform distribution.

In the previous derivation we assumed that Eq.~11! rep-
resents a stationary joint probability density. That
Pst

NBC(x,t;y,t2t) satisfies

E
2`

`

Pst
NBC~x,t;y,t2t!dx5Pst

NBC~y! and

E
2`

`

Pst
NBC~x,t;y,t2t!dy5Pst

NBC~x!, ~18!

wherePst
NBC(•) is given by Eq.~9!. The first relation can be

immediately verified. The second relation, however, is o
satisfied forab21l5a, as can be shown by detailed calc
lations similar to those carried out in the Appendix. Cons
quently, we again encounter the condition on the right ha
side of Eq.~13!. Using this condition, we can eliminatel in
Eq. ~11!, and obtain

Pst
NBC~x,t;y,t2t!5

a~t!A12b2~t!

p

3exp$2a~t!@x21y222b~t!xy#%.

~19!

We now return to the calculation of then:1 autocorrela-
tion @Eq. ~8!# for g150. Substituting Eq.~9! into Eq.~8!, for
g150 we obtain

Kst
(n)~t;g150!

5H 0 for n even

n@1•3•5•••~n22!#

g22(n11)/2l~t!(n21)/2
for n odd.

~20!

In particular, we obtain

Kst
(3)~t;g150!5^j3~ t !j~ t2t!&st

5
3

2 g2
s2~t!

5
3@11sin~g2t!#

4 g2
2 cos~g2t!

. ~21!

Using Eq.~11!, we can also determinen:m autocorrelations
C(n:m)(Dt) for Dt5t defined by

Cst
(n:m)~t!ª^jn~ t !jm~ t2t!&st

5E
2`

` E
2`

`

xnym Pst
NBC~x,t;y,t2t!dx dy.

~22!

For example, forg150, the autocorrelationCst
(2:2)(t) reads
7-3
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Cst
(2:2)~t;g150!5^j2~ t !j2~ t2t!&st5

1

4a~t!l~t!
1

3 b2~t!

4l2~t!
~23!

5@s2~t!#21
1

2g2
2

. ~24!

Note that to obtain Eq.~24! from Eq. ~23!, we useds2(t)
51/2l(t) and Eq.~14!.

The stationary solution of the stochastic process@Eq. ~2!#
given by Eqs.~9!–~11! and Eqs.~14! and ~16! can also be
used to describe the stationary solution of the original s
chastic process@Eq. ~1!#. To this end, we substitute the var
ablesg1 , g2, and t by g18/Q8, g28/Q8, and Q8t8, which
gives us

l~t8!5
1

Q8

Ag28
22g18

2
•@g181g28 cos~Ag28

22g18
2t8!#

g28 sin~Ag28
22g18

2t8!1Ag28
22g18

2
,

a~t8!5
l~t8!

12S Q8l~t8!2g18

g28
D 2 , b~t8!5

Q8l~t8!2g18

g28

~25!

for 0<t8Ag28
22g18

2,arccos(2g18/g28)<p.

B. Numerics

In line with the Euler method for ordinary Langevin equ
tions @16,41,42#, we discretized the SDDE~2! in terms of a
time-discrete stochastic delay equation

jn115jn1D~g1jn1g2jn2m!1ADwn , n>0 ~26!

~see also Ref.@43# Sec. 5!. Accordingly, time was measure
in steps ofD ~i.e., t5 iD and t5mD) and the fluctuation
force was approximated by the random numberswn . We
usedD50.01, and focused on the effect of the delay ter
that is, we putg150 and g2Þ0. In detail, we usedg2

FIG. 1. Variances computed from the time-discrete stocha
delay equation~26! ~diamonds! and from Eq.~15! ~solid line! for
different delayst. A singularity occurs at the critical delaytc51.
02191
-

,

5p/2, which implies a critical delaytc51 @cf. our comment
following Eq. ~2! above#. Our simulation was based on a
ensemble ofN510 000 realizations ofjn . As an initial con-
dition ~the graph defined on@2t,0#) we used a series o
random numbers selected from a Gaussian distribution w
unit variance. The random numberswn were calculated by
means of a Box-Muller algorithm. For each realization ofjn
we iterated Eq.~26! nf55000 times, assuming that the s
$jnf

% would reflect the stationary behavior of the ensemb

From the ensemble$jnf
% we calculated the meanM0,num, the

variancesnum
2 , and the shifted fourth and sixth moments@72#

defined by M4,numª^@jnf
2^jnf

&#4& and M6,numª^@jnf

2^jnf
&#6&. The diamonds in Figs. 1, 2, and 3 represent

numerical results forsnum
2 , M4,num, andM6,num for different

delays.
According to the Fokker-Planck approach~FPA!, the sta-

tionary solution is a Gaussian distribution. Consequently,
shifted moments can be expressed in terms of the varia
s2: M4,FPA53@s2#2 and M6,FPA515@s2#3, wheres2 is de-
scribed by Eq.~15!. These analytical results are depicted
solid lines in Figs. 1 (s2), 2 (M4,FPA), and Fig. 3 (M6,FPA).
By comparison, we realize that the numerical simulations

ic FIG. 2. Shifted fourth moments computed from the tim
discrete stochastic delay equation~26! ~diamonds! and from the
Fokker-Planck approach solution~solid line! given by Eqs.~9! and
~16! for different delayst.

FIG. 3. Shifted sixth moments computed from the time-discr
stochastic delay equation~26! ~diamonds! and from the Fokker-
Planck approach solution~solid line! given by Eqs.~9! and~16! for
different delayst.
7-4
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the delay Langevin equation~2! are in agreement with the
Fokker-Planck solution@Eq. ~9!# derived from Eq.~5!. Fig. 4
shows the meanM0,num of the set$jnf

% ~circles! as well as

the ratiosM4,num/M4,FPA ~crosses! and M6,num/M6,FPA ~dia-
monds!. Both ratios,M4,num/M4,FPA andM6,num/M6,FPA, are
close to unity, withM6,num/M6,FPA having larger deviations
from unity thanM4,num/M4,FPA. Figure 5 shows the 3:1 au
tocorrelation@Eq. ~21!# computed from the time-discrete sto
chastic delay equation~26! as^(jnf

)3jnf2m& ~diamonds! and
from the analytical Fokker-Planck solution@Eq. ~21!# ~solid
line!. Again, analytical and numerical results were found
be in good agreement. The 1:1 autocorrelation^jnf

jnf2m&
was also computed and found to be approximately cons
with ^jnf

jnf2m&'0.31 for all delaystP@0,1), which is in

line with Eq. ~8! for g150 andg25p/2.
So far, our simulations verified the stationary probabil

densityPst
NBC(x) @see Eq.~9!#, and then:1 autocorrelations

@Eq. ~20!#, which can be derived fromPst
NBC(x) via Eqs.~7!

and ~8!, irrespective of the explicit structure of the join
probability densityPst

NBC(x,t;y,t2t) given by Eq.~11!. In
order to verify the explicit structure ofPst

NBC(x,t;y,t2t)
and, in particular, the parametersa(t) andb(t) described by
Eqs. ~14! and ~16!, we studied the 2:2 autocorrelatio
Cst

(2:2)(t;g150), which involves the parametersa(t) and

FIG. 4. Circles denote mean values obtained from the tim
discrete stochastic delay equation~26! for different delayst.
Crosses and diamonds correspond to the ratiosM4,num/M4,FPA and
M6,num/M6,FPA, respectively. See the text for details.

FIG. 5. Comparison of the 3:1 autocorrelation obtained fr
numerical simulations~diamonds!, and from the Fokker-Planck ap
proach solution~21! for different delays.
02191
nt

b(t) @cf. Eq. ~23!#, and can only be determined by means
the explicit ansatz@Eq. ~11!# for Pst

NBC(x,t;y,t2t) @cf. Eq.
~22!#. In detail, we computedCnum

(2:2)
ª^jnf

2 jnf2m
2 & using our

simulation scheme@Eq. ~26!#, and calculatedCFPA
(2:2) by

means of Eqs.~15! and ~24!; see Fig. 6. Again, theoretica
and numerical results were found to be in excellent agr
ment.

III. APPLICATIONS AND SPECIAL NONLINEAR CASES

A. Stochastic time lag model for population growth—
weak nonlinearities and strong noise

In many cases, the evolution of the size of a population
determined by two contrasting effects. On the one ha
small populations typically grow exponentially~Malthusian
law!. On the other hand, when approaching critical popu
tion sizes growth rates of populations usually decrease~satu-
ration effect! and population sizes converge to stable stati
ary values; see, e.g., Refs.@44,45#. A prominent model that
can account for these observations is given by

d

dt8
N~ t8!5kN~ t8!G~N~ t8!! for t8>t08 , ~27!

and N(t08)5N0.0, whereN denotes the population size,k
.0 is the so-called intrinsic rate of increase, andG(z) with
G(z* )50 for a particular z* .0 describes the self
regulation of the population dynamics leading to a saturat
effect and a stable stationary population sizeNst5z*
@44,46,47#. Two special cases are worth mentioning: the
gistic model withG(z)ª(12z/z* ) @44,45# and the Gomp-
ertz model with G(z)ª2 ln(z/z* ) @46–48#. They can be
viewed as special cases ofG(z)ª@12(z/z* )12q#/(12q)
for q50 andq→1 @49#. Fluctuations of the population dy
namics can be modeled in various ways. For example, it
been suggested to consider extensive~size-dependent! ran-
dom forces which leads to

d

dt8
N~ t8!5k N~ t8!G„N~ t8!…1AQ8 N~ t8! G8~ t8!, ~28!

-

FIG. 6. Comparison of the 2:2 autocorrelation obtained fro
numerical simulations~diamonds! and from the Fokker-Planck ap
proach solution~24! for different delays.
7-5
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whereG8(t8) denotes a Langevin force@46,47,50# or repre-
sents a Poisson process@48#, and Q8 corresponds to the
strength of the fluctuations. In line with Sec. II, in this pap
G8(t8) is assumed to be a Langevin force. The multiplicat
noise term can be interpreted, for example, as evolution
disasters proportional to the population sizeN @48# or as a
random contribution to the growth functionG ~i.e., kG
→kG1AQ8G8) @50#. Note that the stochastic process d
scribed by Eq.~28! is subjected to mixed boundary cond
tions, that is, we have a reflective boundary at the ori
(N50) and a natural boundary forN→`. The evolution
equation~28! suffers from the tacit assumption that the e
fective growth ratekG is determined by the instantaneo
population sizeN(t), that is, kG5kG„N(t)…. In general,
growth rates depend on the histories of populations wh
implies that we have to replacekG„N(t8)…, for example, by

k*2`
t8 N(a)s(t82a)da @46,51# or by k*a1

a2G„N(t8

2a)…s(a)da @47# with a2.a1, wheres(z)>0 weights the
contributions ofN(t8), and the integrals are often called Vo
terra integrals. When simplifying the Volterra integrals, w
arrive at population dynamics models with constant time l
involving growth functions of the formkG„N(t82t8)…,
where the delayt8 may be related to the so-called egg-t
adult time~or maturation or generation time! @44,47,52#. In-
serting this assumption into Eq.~28! we obtain

d

dt8
N~ t8!5kN~ t8!G„N~ t82t8!…1AQ8N~ t8!G8~ t8!.

~29!

To study the effect of the delay lengtht8 on the population
dynamics, we will use the Gompertz term because this
lows us to use the result derived in Sec. II. Since otheG
functions, such as the function of the logistic model, a
qualitatively similar to the Gompertz function, the finding
obtained in the following may also carry over to other pop
lation dynamics models. For the Gompertz term, Eq.~29!
reads

d

dt8
N~ t8!52kN~ t8!lnS N~ t82t8!

z*
D 1AQ8N~ t8!G8~ t8!.

~30!

Following Refs.@47,48,50#, we introduce the new variabl
j8(t8)ª ln(N(t8)/z* ) for j8PR, and transform Eq.~30! into

d

dt8
j8~ t8!52kj8~ t82t8!1AQ8G8~ t8!. ~31!

Consequently, the stationary probability densityPst(x) of the
processj8 exists forkt8P@0,p/2), and is given by Eqs.~9!
and ~25! with g1850 and g285k. Furthermore, letWst(N)
denote the stationary probability density of the SDDE~30!.
Then,Wst(N) can be derived fromPst(x) by means of
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Wst~N!dN5Pst~x!dx⇒Wst~N!

5
1

N
PstS ln

N

z*
D

5
1

N
Al~t8!

p F N

z*
G2l(t8)ln(N/z* )

, ~32!

with

l~t8!5
k cos~kt8!

Q8@11sin~kt8!#
, ~33!

and limN→0Wst(N)5 limN→`Wst(N)50 for l.0 and kt8
P@0,p/2). In particular, fort850 ~i.e., for l5k/Q8), Eq.
~32! recovers the result obtained by Goelet al. ~Ref. @47#,
2.20a!. We can now study the effect oft8 on the population
dynamics. To this end, we consider the mean station
population size

^N&~t8!5Al~t8!

p E
0

`F N

z*
G2l(t8)ln(N/z* )

dN

5Al~t8!

p E
0

`

exp$2l~t8!@ ln~N/z* !#2%dN.

~34!

Differentiating^N&(t8) with respect tot8, we obtain

d

dt8
^N&~t8!5

d^N&~l!

dl

dl~t8!

dt8
, ~35!

d^N&~l!

dl
52F ^N&

2l~t8!
1E

0

`

N@ ln~N/z* !#2Wst~N!dNG,0,

~36!

dl~t8!

dt8
52

k2@12sin~kt8!#

Q8@11sin~kt8!#2
t8,0 for t8.0. ~37!

We can appreciate from Eq.~37! that l(t8) is a monotoni-
cally decreasing function fort8.0, which is in agreemen
with our observation in Sec. II B that the variances2

51/2l increases when the delay length is increased. Fr
Eq. ~35!, it then follows that the mean population size^N&
increases monotonically fort8.0. Figure 7 shows the prob
ability densityWst(N) for several delayst8. We appreciate
that an increase of the time delayt8 @which implies a de-
crease of the decay coefficientl, cf. Eq. ~37!# results in a
shift of the positions of the peaks of the distributionsWst(N)
toward the origin. In addition, the tails of the distribution
become more pronounced for larger delays; see Fig. 8. A
net effect, there is an increase of the mean value^N&, cf. Eqs.
~35!–~37!.

In sum, the stochastic Gompertz model with delay h
illustrated that we can take advantage of the stationary p
ability density derived in Sec. II in order to analyze nonline
7-6
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SDDE’s, provided that the nonlinearities are weak in t
sense that we can transform the nonlinear equations into
ear ones. In addition, we have observed an important ef
of the delay on the mean population size, namely, the
crease of the mean population size when the time dela
increased.

B. Pretransition variability of tracking movements with
delayed feedback—strong nonlinearities and weak noise

The increase of time delays in systems with feedback c
trol can destabilize system states. In several instances,
sitions from a stable fixed point behavior to an oscillato
behavior can be observed when the delay time or the gai
delay feedback loops is increased; for example, in semic
ductor laser with optical injection@53#, in population dynam-
ics @44#, in the human pupil light reflex@3#, and in tracking
movements@8#. In general, the reduction of the stability of
spatiotemporal pattern exhibited by a system due to chan
of system parameters can be studied both from determin
and stochastic points of view. In the former case, desta
zation is revealed by qualitative transitions between cha
teristic spatiotemporal patterns as mentioned above@54–57#.
In the latter case, the reduction of the stability of a particu

FIG. 7. Probability densitiesWst(N) computed from Eq.~32!
for several delayst8 and k5p/2, Q851 and z* 51. From this
follows a critical delay oftc851. Population sizesN are depicted
here in dimensionless units.
i-
i

ne
s

th
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spatio-temporal pattern is often accompanied by an incre
in pattern variability in subcritical or pretransition parame
regimes@18,58–63#. In this section, we will discuss the pre
transition variability of a system that is known to exhib
delay induced transitions from fixed point behavior to osc
latory behavior: the human motor control system involved
unimanual tracking tasks with delayed visual feedback.
this end, we will analyze a theoretical model@7#, which was
found to be in good qualitative agreement with experimen
findings @8#.

In unimanual tracking tasks, subjects look at a screen
watch an oscillating target signal. They can move their a
or hand, and in doing so they can produce a second signa
the screen—a manual response signal. The displaceme
the manual response signal corresponds to the displace
of the limb that has to be moved. The task is to match
response signal with the target signal. The manual respo
signal is displayed on the screen with a particular fixed de
text8 . The tracking movement can then be studied for vario
oscillation frequenciesV of the target signal and for differ
ent delaystext8 .

Tass et al. developed a deterministic model which d
scribes the evolution of the relative phasef between the
target signal and the limb movement@7#. According to this
model, the change of the relative phasef per unit time de-
pends on two terms

FIG. 8. Probability densitiesWst(N) as in Fig. 7, but forN
P@0,4#.
~38!
les
ch

ned
r
of
on-

al-
with a.0, b.0, andt8'text8 ~also see below!. The nonlin-
earities occurring in Eq.~38! are consistent with neurophys
ological findings. First, in the study of human eye tracking
was argued that human pursuit systems are more than li
response systems, and that nonlinearities contribute es
tially to the dynamics of these systems@64#. In a similar
vein, observations of eye movement trajectories indicate
t
ar

en-

at

asymmetric force-velocity characteristics of eye musc
play a crucial role in the control of eye movements. Su
asymmetric characteristics, in turn, can hardly be explai
in terms of linear models@65#. Furthermore, to account fo
experimentally observed asymmetries of velocity profiles
hand movements, Bullock and Grossberg introduced a n
linear element in their neural model for the control of go
7-7
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T. D. FRANK AND P. J. BEEK PHYSICAL REVIEW E64 021917
directed movements: a gain signal that interacts in a mu
plicative fashion with another neural signal@66#. As shown
in Ref. @7#, term I describes the proprioceptive control of t
tracking movement, and affects the change of the rela
phasef instantaneously, whereas term II describes the ef
of the visual control. In the time argument of this express
we find the delayt8 that was originally proposed to be equ
to the artificial delaytext8 . However, the model by Tasset al.
does not incorporate intrinsic delays of the visual and pr
rioceptive system, which are in the order of 60 ms for e
movements@64# and in the range of 30–90 ms for lim
movements@67,68#. Since in the tracking experiment the a
tificially introduced delaytext8 was gradually increased from
text8 50 in steps between 25 and 50 ms@8#, we need to take
possible interactions between intrinsic delays and the ar
cial delay into account. To this end, we introduce the eff
tive delaystvis,tot8 andtprop,tot8 that describe the total delays o
the proprioceptive and visual systems, respectively~for an
analogous situation, see Ref.@3#!. Accordingly, we modify
Eq. ~38!, and obtain

d

dt8
f~ t8!52a sinS f~ t8!2

Vtprop,tot8

2 D
2b sinS f~ t82tvis,tot8 !1

Vtvis,tot8

2 D . ~39!

We assume thattvis,tot8 and tprop,tot8 are positively correlated
with the artificially introduced delaytext8 ~i.e., dtvis,tot8 /dtext8
.0 anddtprop,tot8 /dtext8 .0). Since we aim at a discussion o
motor variability, we extend the deterministic model with
white noise forceG(t8) with a fluctuation strengthQ8. Thus
we obtain

d

dt8
f~ t8!52a sinS f~ t8!2

Vtprop,tot8

2 D
2b sinS f~ t82tvis,tot8 !1

Vtvis,tot8

2 D 1AQ8G~ t8!.

~40!

Note that more elaborate discussions involving colored no
forces may be carried out by extending the dimensionality
the problem@3,35,41#. In order to obtain some fundament
insights into the effect of the artificial delaytext8 on the vari-
ability of the phase dynamics@Eq. ~40!#, we confine our-
02191
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selves to the discussion of the stationary case for weak fl
tuation forces. More precisely, as suggested in
deterministic case with delay@3,46,47,69#, in the stochastic
case without delay~Ref. @41#, Sec. 5.10!, and in the genera
stochastic case with delay@35#, we consider linear SDDE’s
as approximations of nonlinear SDDE’s. Consequently,
calculate first from Eq.~40! the stationary solutionfst for
Q850, which satisfies

a sinS fst2
Vtprop,tot8

2 D 52b sinS fst1
Vtvis,tot8

2 D ~41!

and is explicitly given by

fst5arctanH a sin~Vtprop,tot8 /2!2b sin~Vtvis,tot8 /2!

a cos~Vtprop,tot8 /2!1b cos~Vtvis,tot8 /2!
J .

~42!

Next we linearize Eq.~40! with respect tofst, and obtain

d

dt8
j~ t8!52g18j~ t8!2g28j~ t82tvis,tot8 !1AQ8G~ t8!,

~43!

with

g18ªa cosS fst2
Vtprop,tot8

2 D and

~44!

g28ªb cosS fst1
Vtvis,tot8

2 D
and j(t8)ªf(t8)2fst. Furthermore, from Eqs.~41! and
~44!, it follows that g28

22g18
25b22a2. In Sec. II we have

argued that the inequalityg28.g18>0 should hold. Conse-
quently, here we assumeb.a⇒g28.0`g28.g18 and 2fst

2Vtprop,tot8 P@2p/2,p/2#⇒g18.0. The stationary probabil-
ity density ofj(t8) described by the linearized equation~43!
is given by Eq.~9! @73#. The variances2 of j(t8) can then
be derived from Eq.~25!, and reads

1

2s2
5l5

C

Q8

@Ag28
22C21g28 cos~Ctvis,tot8 !#

g28 sin~Ctvis,tot8 !1C
,

CªAb22a2. ~45!

The decay coefficientl varies withtext8 according to
ing
~46!

with tanuªA@g28/C#221. On account of the impact of theB term, the variance might increase or decrease whentext8 is
increased. However, if theB term can be neglected with respect to theA term, then the increase of the variance with increas
delay is guaranteed; that is, we obtain
7-8
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d

dtext8
l,0 ⇒ d

dtext8
s2.0. ~47!

In particular, for small delays and target frequencies~i.e., Vtprop,tot8 '0 andVtvis,tot8 '0) we findfst'0, g18'a, andg28'b.
Then, it follows from Eq.~44! that

~48!
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Consequently, for small delays and low tracking frequenc
theB term can be neglected. In this case, Eq.~46! reduces to

d

dtext8
l52

b2C2@11sin~Ctvis,tot8 1u0!#

Q8@b sin~Ctvis,tot8 !1C#2

dtvis,tot8

dtext8
,0,

~49!

with tanu0ªa/Ab22a2 implying that, with increasing de
lay text, the decay coefficientl decreases and, consequent
the variances2 increases.

In sum, we demonstrated explicitly the application of t
concepts of delay Fokker-Planck equations to linearized
DE’s. As an example, we used a SDDE that describes
manual tracking movements in terms of the relative ph
between the target signal and the limb movement. In l
with the deterministic model that shows that the stability
fixed point behavior is lost when the artificially introduce
time delay is increased beyond a critical value, we fou
particular conditions in which the variance of the relati
phase increases with increasing time delay. However,
analysis also showed that another scenario is possible:
ance might decrease with increasing time delay@cf. the B
term in Eq.~46!#.

IV. DISCUSSION

We showed that stationary probability densities for line
SDDE’s can be derived by means of the corresponding d
Fokker-Planck equations. The crucial step was to find a
tionary joint probability densitya,b,lPst

NBC(x,t;y,t2t) de-
pending on a set of parameters (a,b,l) which ~i! satisfies the
self-consistent condition * a,b,lPst

NBCdx5h1(y),
* a,b,lPst

NBCdy5h2(x)⇒h1(z)5h2(z)5h(z), ~ii ! is consis-
tent with the stationary solution@i.e., h(z)5a,b,lPst

NBC(z)],
and ~iii ! solves the delay Fokker-Planck equation. On
basis of these constraints, we were able to determine al
parameters but one. The decay coefficientl was obtained
from a detailed analysis of the corresponding linear SDD
In particular, in this analysis an exact expression for the
tocorrelationKst

(1)(Dt) for arbitrary time shiftsDt was de-
rived, andl was computed asl51/2Kst

(1)(0) @36#. It is ob-
vious that a delay Fokker-Planck equation of the form of E
~3! does not provide sufficient information for a calculatio
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of Kst
(1)(Dt) for arbitraryDt. Therefore, future studies focus

ing on SDDE-independent derivations of stationary solutio
of linear delay Fokker-Planck equations need to follow a
proaches different from the SDDE approach.

As already stated in Sec. I, in general, stationary proba
ity densities of nonlinear stochastic differential equations c
only be derived indirectly using the theory of Fokker-Plan
equations. Consequently, delay Fokker-Planck equations
the necessary tool for obtaining stationary distributions
nonlinear SDDE’s. In addition, following van Kampen@70#,
the derivation of evolution equations of stochastic quantit
in two complementary ways~using SDDEs and delay
Fokker-Planck equations! can help us to uncover further de
tails of the stochastic processes under study. For example
n>1, from the SDDE~2! it follows that

d

dt
^xn&52ng1^x

n&2ng2^x
n21~ t !x~ t2t!&

1n^xn21~ t !G~ t !&, ~50!

whereas from the delay Fokker-Planck equation~3! we ob-
tain

d

dt
^xn&52ng1^x

n&2ng2^x
n21~ t !x~ t2t!&

1n~n21!^xn22~ t !&. ~51!

By virtue of Eqs.~50! and ~51!, we can then calculate th
transient cross-correlations between the stochastic pro
j(t) given by Eq.~2! and the Langevin forceG, and find

^xm~ t !G~ t !&5m^xm21~ t !&, m>1. ~52!

In particular, we havêx(t)G(t)&51 and, in the stationary
case,̂ x2(t)G(t)&st50. Relation~52! agrees with the relation
between cross-correlationŝ xm(t)G(t)& and moments
^xm(t)& of an Ornstein-Uhlenbeck process without delay.
course, the values of the moments^xm(t)& and cross-
correlationŝ xm(t)G(t)& will differ. Consequently, in the lin-
ear case, the correlations between the stochastic processj(t)
and its noise sourceG(t) can be expressed in terms of high
moments of the processj(t)—irrespective of the delayt.
7-9
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T. D. FRANK AND P. J. BEEK PHYSICAL REVIEW E64 021917
This result can be immediately generalized to the nonlin
case. To this end, let us consider the nonlinear SDDE,

d

dt
j~ t !5g1@j~ t !#1g2@j~ t2t!#1G~ t ! ~53!

and the corresponding delay Fokker-Planck equation@37,38#,

]

]t
P~x,t !52

]

]x
g1~x!P~x,t !2

]

]x
P~x,t !

3E
2`

`

g2~y!P~y,t2tux,t !dy1
1

2

]2

]x2
P~x,t !,

~54!

with natural boundary conditions; cf. Sec. II. Computing t
evolution equations for̂ xn& from Eqs. ~53! and ~54!, we
obtain

d

dt
^xn&5n^xn21g1~x!&1n^xn21~ t !g2„x~ t2t!…&

1n^xn21~ t !G~ t !&,
~55!

d

dt
^xn&5n^xn21g1~x!&1n^xn21~ t !g2„x~ t2t!…&

1n~n21!^xn22~ t !&

which again lead to Eq.~52!. In sum, the theory of delay
Fokker-Planck equations can uncover properties of tim
continuous stochastic processes with delays that canno
addressed by means of SDDE’s alone.

In addition, we have shown that in special cases nonlin
SDDE’s can be transformed into linear SDDE’s, so that ex
stationary probability densities for the nonlinear case can
derived. In Sec. III A, we illustrated this procedure with th
Gompertz population model. We showed that an increas
the time delay or maturation time results in an increase of
mean population size. This result does not come as a sur
when we keep in mind that the stationary probabilityWst(N)
of the population dynamics and the stationary probabi
densityPst(x) of the linear SDDE~1! with g150 are related
by a transformation which maps the real line (xPR) onto the
positive half line (NP@0,̀ )). The monotonic increase of th
variance of the process defined onR @cf. Eq. ~33!# then cor-
responds to a monotonic increase of the mean value of
process defined on the interval@0,̀ ). In view of this consid-
eration and on account of the fact that the Gompertz gro
function agrees qualitatively with many other growth fun
tions and belongs to a class of simple functions~namely,
monotonically decreasing functions!, we expect that a simi-
lar effect of the delay on the mean population size can a
be found in other population models.

Finally, we studied human motor variability during un
manual tracking with delayed feedback on the basis o
theoretical model proposed by Tasset al. @7#. Among other
indicators such as relaxation time, performance variability
an important indicator for the stability of a movement p
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tern. In recognition of the fact that the increase of time d
lays in feedback loops can result in a breakdown of beh
ioral patterns and the emergence of interesting no
behavioral patterns, we expected to observe a positive co
lation between variability and delay length, that is, a negat
correlation between pattern stability and time delay. We c
firmed this hypothesis by identifying particular model co
straints for which an increase of the time delay yields
increase of variability. To this end, we examined a lineariz
SDDE. According to this equation, the change of variabil
is determined by two terms; cf. Eq.~46!. The first term~the
A term! describes change of variability due to an increase
the effective visual delay when the coefficients of the line
ized model are fixed~i.e., g28

1'const andg28
2'const). This

term results in a decrease of the decay coefficientl, that is,
in an increase of the variability. The second term~theB term!
describes the impact of the shift of the coefficients of t
linearized model on the variability. The sign of this term
likely to depend on the model parameter values. Theref
there might be a reduction or an increase of variability due
the impact of this latter term. This example shows us that
concepts of the theory of ordinary stochastic processes w
out delay cannot necessarily be adopted in a one-to-one f
ion for stochastic processes with delays. As is well kno
from the theory of deterministic delay equations, syste
with delays can exhibit a variety of striking phenomena th
are absent in systems without delays.
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APPENDIX A: DERIVATION OF EQ. „12…

Inserting Eq.~9! in the right hand side (R) of Eq. ~7!
gives us

R52g1xP st
NBC~x!2

1

2

]

]x
P st

NBC~x!

5~l2g1!Al

p
x exp$2lx2%. ~A1!

Substituting Eq.~11! in the left hand side (L) of Eq. ~7!, we
obtain

L5
g2

p
AlaE

2`

`

y exp$2a@x2by#22ly2%dy. ~A2!

Using the identity
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a@x2by#21ly2

5Fa2
a2b2

ab21l
Gx21@ab21l#F y2x

ab

ab21l
G 2

5
al

ab21l
x21@ab21l#F y2x

ab

ab21l
G 2

, ~A3!

we find

L5
g2

p
Ala expH 2

al

ab21l
x2J

3E
2`

`

y expH 2@ab21l#F y2x
ab

ab21l
G 2J dy
J

s.

fte

—

ic

H

s

02191
L5
g2

p
AlaexpH 2

al

ab21l
x2J

3E
2`

`

y expH 2@ab21l#F y2x
ab

ab21l
G 2J dy

5
g2

p
AlaA p

ab21l
x

ab

ab21l
expH 2

al

ab21l
x2J

5g2Al

p

a3/2b

@ab21l#3/2
x expH 2

al

ab21l
x2J . ~A4!

Finally, we divide Eqs.~A1! and ~A4! by Al/p, and thus
obtain Eq.~12!.
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